Clustering Algorithms on Low-Power and High-Performance Devices for Edge Computing Environments

Author:

Lapegna MarcoORCID,Balzano WalterORCID,Meyer NorbertORCID,Romano DiegoORCID

Abstract

The synergy between Artificial Intelligence and the Edge Computing paradigm promises to transfer decision-making processes to the periphery of sensor networks without the involvement of central data servers. For this reason, we recently witnessed an impetuous development of devices that integrate sensors and computing resources in a single board to process data directly on the collection place. Due to the particular context where they are used, the main feature of these boards is the reduced energy consumption, even if they do not exhibit absolute computing powers comparable to modern high-end CPUs. Among the most popular Artificial Intelligence techniques, clustering algorithms are practical tools for discovering correlations or affinities within data collected in large datasets, but a parallel implementation is an essential requirement because of their high computational cost. Therefore, in the present work, we investigate how to implement clustering algorithms on parallel and low-energy devices for edge computing environments. In particular, we present the experiments related to two devices with different features: the quad-core UDOO X86 Advanced+ board and the GPU-based NVIDIA Jetson Nano board, evaluating them from the performance and the energy consumption points of view. The experiments show that they realize a more favorable trade-off between these two requirements than other high-end computing devices.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3