Grid-Based DBSCAN Clustering Accelerator for LiDAR’s Point Cloud

Author:

Lee Sangho1ORCID,An Seongmo1ORCID,Kim Jinyeol1ORCID,Namkung Hun1ORCID,Park Joungmin1ORCID,Kim Raehyeong1ORCID,Lee Seung Eun1ORCID

Affiliation:

1. Department of Electronic Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

Abstract

Autonomous robots operate on batteries, rendering power efficiency essential. The substantial computational demands of object detection present a significant burden to the low-power cores employed in these robots. Therefore, we propose a grid-based density-based spatial clustering of applications with a noise (DBSCAN) clustering accelerator for light detection and ranging (LiDAR)’s point cloud to accelerate computational speed and alleviate the operational burden on low-power cores. The proposed method for DBSCAN clustering leverages the characteristics of LiDAR. LiDAR has fixed positions where light is emitted, and the number of points measured per frame is also fixed. These characteristics make it possible to impose grid-based DBSCAN on clustering a LiDAR’s point cloud, mapping the positions and indices where light is emitted to a 2D grid. The designed accelerator with the proposed method lowers the time complexity from O(n2) to O(n). The designed accelerator was implemented on a field programmable gate array (FPGA) and verified by comparing clustering results, speeds, and power consumption across various devices. The implemented accelerator speeded up clustering speeds by 9.54 and 51.57 times compared to the i7-12700 and Raspberry Pi 4, respectively, and recorded a 99% reduction in power consumption compared to the Raspberry Pi 4. Comparisons of clustering results also confirmed that the proposed algorithm performed clustering with high visual similarity. Therefore, the proposed accelerator with a low-power core successfully accelerated speed, reduced power consumption, and effectively conducted clustering.

Funder

Ministry of Science and ICT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3