Abstract
Laser-microtextured surfaces have gained an increasing interest due to their enormous spectrum of applications and industrial scalability. Direct laser interference patterning (DLIP) and the well-established direct laser writing (DLW) methods are suitable as a powerful combination for the fabrication of single (DLW or DLIP) and multi-scale (DLW+DLIP) textures. In this work, four-beam DLIP and DLW were used independently and combined to produce functional textures on aluminum. The influence of the laser processing parameters, such as the applied laser fluence and the number of pulses, on the resulting topography was analyzed by confocal microscopy and scanning electron microscopy. The static long-term and dynamic wettability characteristics of the laser-textured surfaces were determined through water contact angle and hysteresis measurements, revealing superhydrophobic properties with static contact angles up to 163° and hysteresis as low as 9°. The classical Cassie–Baxter and Wenzel models were applied, permitting a deeper understanding of the observed wetting behaviors. Finally, mechanical stability tests revealed that the DLW elements in the multi-scale structure protects the smaller DLIP features under tribological conditions.
Funder
Deutsche Forschungsgemeinschaft
Subject
General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献