Author:
Shan Li-Mei,Liu Guo-Biao,Tang Hua,Li Zhi-Hong,Wu Ju-Ying
Abstract
The mechanical durability of a superhydrophobic aluminum alloy surface is an important indicator of its practical use. Herein, we propose a strategy to prepare a superhydrophobic 2024 aluminum alloy surface with highly enhanced mechanical durability by using a two-step chemical etching method, using a NaOH solution as the etchant in step one and a Na2CO3 solution as the etchant in step two. Robust mechanical durability was studied by static contact angle tests before and after an abrasion test, potentiodynamic polarization measurements after an abrasion test and electrochemical impedance spectroscopy tests after an abrasion test. Furthermore, the mechanism for enhanced mechanical durability was investigated through scanning of electron microscopy images, energy-dispersive X-ray spectra, Fourier transform infrared spectra and X-ray photoelectron spectra. The testing results indicate that a hierarchical rough surface consisting of regular micro-scale dents and some nano-scale fibers in the micro-scale dents, obtained with the two-step chemical etching method, contributes to highly enhanced mechanical durability. Meanwhile, the as-prepared superhydrophobic 2024 aluminum alloy surface retained a silvery color instead of the black shown on the superhydrophobic 2024 aluminum alloy surface prepared by a conventional one-step chemical etching method using NaOH solution as the etchant.
Funder
the Natural Science Foundation of Sichuan Engineering Technical College
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献