Author:
Hu Liangming,Li Shuyu,Zhu Junfu,Yang Xu
Abstract
To establish the mathematic model of the constitutive relation and failure criteria of plastic concrete under true triaxial compressive stress, uniaxial compressive strength and true triaxial compressive strength of plastic concrete under three kinds of confining pressures with a size of 150 × 150 × 150 mm3 and a curing age of 540 days were tested, and the elastic modulus of plastic concrete with a size of 150 × 150 × 300 mm3 and a curing age of 90 days was tested. Based on the database, under uniaxial compressive stress tests and true triaxial compressive stress tests, the mathematic model of constitutive relation and the failure criteria of plastic concrete were investigated. It was observed that the strength of plastic concrete increased with confining stress. The mathematic model of constitutive relation in the form of the quartic polynomial is in good agreement with measured data. The general equations of failure criteria based on the octahedral stress-space under true triaxial compressive stress in the form of quadratic polynomial are well-fitting with experimental data. The mathematic model of constitutive relation and failure criteria of plastic concrete could provide the basis for a numerical simulation analysis of plastic concrete under true triaxial compressive stress, as well as promote the engineering application of plastic concrete.
Funder
National Key Research and Development Program of China
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献