Temporal Response of Mesocarnivores to Human Activity and Infrastructure in Taihang Mountains, Central North China: Shifts in Activity Patterns and Their Overlap

Author:

Chen Yanzhi1ORCID,Liu Beibei2ORCID,Fan Deqing3,Li Sheng4ORCID

Affiliation:

1. Keystone Academy, Beijing 101318, China

2. Chinese Felid Conservation Alliance, Beijing 101121, China

3. Tieqiaoshan Provincial Nature Reserve, Jinzhong 032704, China

4. School of Life Sciences, Institute of Ecology, Peking University, Beijing 100871, China

Abstract

Mesocarnivores play essential roles in terrestrial ecosystems, but anthropocentric disturbances have profoundly transformed their intraguild interactions worldwide. In this study, we explored how a guild of four mesocarnivores (red fox Vulpes vulpes, leopard cat Prionailurus bengalensis, Asian badger Meles leucurus, and hog badger Arctonyx collaris) partition their temporal niche in the temperate montane forests in North China under different human influences. We conducted a systemic camera-trapping survey on the study species in the central Taihang Mountains from 2016 to 2020. With an extensive survey effort of 111,063 camera-days from 187 camera stations, we obtained 10,035 independent detections of the four mesocarnivores and examined the activity patterns of each species under different levels of human disturbance and their overlaps. The results showed that, while the leopard cat and the badgers shifted their activity towards nocturnality, the red fox showed no significant change. The leopard cat’s degree of nocturnality varied between growing and non-growing seasons, likely a response to avoid humans and other competitors. However, the activity overlaps between species pairs demonstrated no statistically significant difference, indicating a long-developed coexistence mechanism that is homogenous across the landscape. Demonstrating how mesocarnivores shift activity patterns in response to human risks while partitioning resources, this study enhances our understanding of mesocarnivore behavioral changes and interspecific interactions at human–nature interfaces.

Funder

National Key Program of Research and Development, Ministry of Science and Technology of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3