Seasonal Variation in Mammalian Mesopredator Spatiotemporal Overlap on a Barrier Island Complex

Author:

Bransford Timothy D.1ORCID,Harris Spencer A.123,Forys Elizabeth A.34ORCID

Affiliation:

1. Animal Studies Discipline, Eckerd College, St. Petersburg, FL 33711, USA

2. Economics Discipline, Eckerd College, St. Petersburg, FL 33711, USA

3. Environmental Studies Discipline, Eckerd College, St. Petersburg, FL 33711, USA

4. Biology Discipline, Eckerd College, St. Petersburg, FL 33711, USA

Abstract

Due to lack of apex predators in human-dominated landscapes, mesopredator relationships are complex and spatiotemporal niche partitioning strategies can vary, especially when seasonal shifts in resource availability occur. Our objective was to understand spatiotemporal niche overlap across seasons among mesopredators inhabiting a barrier island complex. We placed 19 unbaited cameras throughout Fort De Soto County Park, Florida, USA between February 2021 and July 2023. Of six mesopredator species detected, three species had >75 detections during both the wet and dry seasons (coyote, Canis latrans; Virginia opossum, Didelphis virginiana; and raccoon, Procyon lotor). Using general linear mixed models, we determined that during the wet season coyote–raccoon and raccoon–opossum detections were positively associated with each other (p < 0.05). During the dry season, raccoon–opossum detections were positively associated, and opossums were more likely to be detected around mangroves. After calculating coefficients of overlap, we found all three species varied their temporal activity between seasons. During the dry season exclusively, all three mesopredators occupied different temporal niches. The park’s isolated but developed nature has potentially led to a destabilized mesopredator community. Understanding seasonal mesopredator dynamics of Fort De Soto is particularly important because this park supports a high number of nesting shorebirds and sea turtles, which are known food sources for mesopredators.

Funder

Tampa Bay Estuary Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3