Hypoxic Conditions Promote Rhythmic Contractile Oscillations Mediated by Voltage-Gated Sodium Channels Activation in Human Arteries

Author:

Virsolvy Anne,Fort Aurélie,Erceau Lucie,Charrabi Azzouz,Hayot MauriceORCID,Aimond Franck,Richard SylvainORCID

Abstract

Arterial smooth muscle exhibits rhythmic oscillatory contractions called vasomotion and believed to be a protective mechanism against tissue hypoperfusion or hypoxia. Oscillations of vascular tone depend on voltage and follow oscillations of the membrane potential. Voltage-gated sodium channels (Nav), responsible for the initiation and propagation of action potentials in excitable cells, have also been evidenced both in animal and human vascular smooth muscle cells (SMCs). For example, they contribute to arterial contraction in rats, but their physiopathological relevance has not been established in human vessels. In the present study, we investigated the functional role of Nav in the human artery. Experiments were performed on human uterine arteries obtained after hysterectomy and on SMCs dissociated from these arteries. In SMCs, we recorded a tetrodotoxin (TTX)-sensitive and fast inactivating voltage-dependent INa current. Various Nav genes, encoding α-subunit isoforms sensitive (Nav 1.2; 1.3; 1.7) and resistant (Nav 1.5) to TTX, were detected both in arterial tissue and in SMCs. Nav channels immunostaining showed uniform distribution in SMCs and endothelial cells. On arterial tissue, we recorded variations of isometric tension, ex vivo, in response to various agonists and antagonists. In arterial rings placed under hypoxic conditions, the depolarizing agent KCl and veratridine, a specific Nav channels agonist, both induced a sustained contraction overlaid with rhythmic oscillations of tension. After suppression of sympathetic control either by blocking the release of catecholamine or by antagonizing the target adrenergic response, rhythmic activity persisted while the sustained contraction was abolished. This rhythmic activity of the arteries was suppressed by TTX but, in contrast, only attenuated by antagonists of calcium channels, Na+/Ca2+ exchanger, Na+/K+-ATPase and the cardiac Nav channel. These results highlight the role of Nav as a novel key element in the vasomotion of human arteries. Hypoxia promotes activation of Nav channels involved in the initiation of rhythmic oscillatory contractile activity.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3