Effect of Temperature, Light, and Storage Time on the Seed Germination of Pinus bungeana Zucc. ex Endl.: The Role of Seed-Covering Layers and Abscisic Acid Changes

Author:

Guo CongcongORCID,Shen Yongbao,Shi Fenghou

Abstract

Pinus bungeana Zucc. ex Endl. is an endemic conifer tree species in China with high ornamental value. In order to investigate favorable conditions for seed germination and explore the germination inhibition mechanism of this species at high temperatures, the effects of temperature, light, and storage on the mean germination time (MGT), speed of germination (SG), and total germination percentage (TGP) are evaluated here. Seeds that have either been kept still or entered into a state of dormancy at high temperature are assessed here by a recovery experiment. Furthermore, the contribution of covering layers on thermo-inhibition is analyzed here, including the way they work. This has been realized by the structural observation and via the determination of the abscisic acid (ABA) content. The results show that seeds germinate to a high percentage (approximately 90%) at temperatures of 15 or 20 °C, with or without light, whereas higher temperatures of 25 or 30 °C impeded radicle protrusion and resulted in the germination percentage decreasing sharply (within 5%). Inhibition at high temperatures was thoroughly reversed (bringing about approximately 80% germination) by placing the ungerminated seeds in favorable temperatures and incubating them for an additional 30 days. Dry cold storage did little to reduce the temperature request for germination. Embryo coverings, especially the nucellar membrane, and ABA levels both had a dominant role in seed germination regulation in response to temperature. Under favorable temperature conditions, the levels of ABA significantly decreased. Germination occurred when the levels dropped to a threshold of 15 ng/g (FW (Fresh Weight)). Incubation at a high temperature (25 °C) greatly increased ABA levels and caused the inhibition of radicle protrusion.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Forestry

Reference58 articles.

1. Seeds: Physiology of Development, Germination and Dormancy;Bewley,2014

2. Fisiologia de Sementes de Plantas Cultivadas;Marcos Filho,2015

3. Germinative response of redroot pigweed (Amaranthus retroflexus L.) to environmental conditions: Is there a seasonal pattern?;Cristaudo;Plant Biosyst. Int. J. Dealing Asp. Plant Biol.,2016

4. Determination of cardinal germination temperatures of two ecotypes of Thymus daenensis subsp. daenensis

5. Determination of germination cardinal temperatures in two basil (Ocimum basilicum L.) cultivars using non-linear regression models

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3