A Framework for Analytical Validation of Inertial-Sensor-Based Knee Kinematics Using a Six-Degrees-of-Freedom Joint Simulator

Author:

Ortigas Vásquez ArianaORCID,Maas AllanORCID,List RenateORCID,Schütz PascalORCID,Taylor William R.ORCID,Grupp Thomas M.ORCID

Abstract

The success of kinematic analysis that relies on inertial measurement units (IMUs) heavily depends on the performance of the underlying algorithms. Quantifying the level of uncertainty associated with the models and approximations implemented within these algorithms, without the complication of soft-tissue artefact, is therefore critical. To this end, this study aimed to assess the rotational errors associated with controlled movements. Here, data of six total knee arthroplasty patients from a previously published fluoroscopy study were used to simulate realistic kinematics of daily activities using IMUs mounted to a six-degrees-of-freedom joint simulator. A model-based method involving extended Kalman filtering to derive rotational kinematics from inertial measurements was tested and compared against the ground truth simulator values. The algorithm demonstrated excellent accuracy (root-mean-square error ≤0.9°, maximum absolute error ≤3.2°) in estimating three-dimensional rotational knee kinematics during level walking. Although maximum absolute errors linked to stair descent and sit-to-stand-to-sit rose to 5.2° and 10.8°, respectively, root-mean-square errors peaked at 1.9° and 7.5°. This study hereby describes an accurate framework for evaluating the suitability of the underlying kinematic models and assumptions of an IMU-based motion analysis system, facilitating the future validation of analogous tools.

Funder

B.Braun Aesculap AG

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3