A frame orientation optimisation method for consistent interpretation of kinematic signals

Author:

Ortigas Vásquez Ariana,Taylor William R.,Maas Allan,Woiczinski Matthias,Grupp Thomas M.,Sauer Adrian

Abstract

AbstractIn clinical movement biomechanics, kinematic data are often depicted as waveforms (i.e. signals), characterising the motion of articulating joints. Clinically meaningful interpretations of the underlying joint kinematics, however, require an objective understanding of whether two different kinematic signals actually represent two different underlying physical movement patterns of the joint or not. Previously, the accuracy of IMU-based knee joint angles was assessed using a six-degrees-of-freedom joint simulator guided by fluoroscopy-based signals. Despite implementation of sensor-to-segment corrections, observed errors were clearly indicative of cross-talk, and thus inconsistent reference frame orientations. Here, we address these limitations by exploring how minimisation of dedicated cost functions can harmonise differences in frame orientations, ultimately facilitating consistent interpretation of articulating joint kinematic signals. In this study, we present and investigate a frame orientation optimisation method (FOOM) that aligns reference frames and corrects for cross-talk errors, hence yielding a consistent interpretation of the underlying movement patterns. By executing optimised rotational sequences, thus producing angular corrections around each axis, we enable a reproducible frame definition and hence an approach for reliable comparison of kinematic data. Using this approach, root-mean-square errors between the previously collected (1) IMU-based data using functional joint axes, and (2) simulated fluoroscopy-based data relying on geometrical axes were almost entirely eliminated from an initial range of 0.7°–5.1° to a mere 0.1°–0.8°. Our results confirm that different local segment frames can yield different kinematic patterns, despite following the same rotation convention, and that appropriate alignment of reference frame orientation can successfully enable consistent kinematic interpretation.

Funder

Aesculap AG

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3