Abstract
A major inhibition to the widespread use of laminate structures is the inability of nondestructive testing techniques to effectively evaluate the bondline integrity. This work proposes and analyzes a bondline-integrity health monitoring approach utilizing shear-mode (d15) piezoelectric transducers. The d15 transducers were embedded in the bondlines of symmetric laminate structures to monitor and evaluate the bondline integrity using ultrasonic inspection. The d15 piezoelectric transducers made of lead zirconate titanate (PZT) enabled ultrasonic inspection of bonds by actuating and sensing antisymmetric waves in laminate structures. Design considerations, fabrication process, and experimental methods for testing a laminate specimen are presented. Designs included bondline-embedded d15 PZT piezoelectric transducers with surface-mounted transverse (d31) piezoelectric transducers for signal comparison. Defects in the bondline were created by a quasi-static three-point bending test, with results showing the ability of d15 piezoelectric transducers to detect bondline damage. Two damage indices based on Pearson correlation coefficient and normalized signal energy were implemented to evaluate the presence of damage and its severity. The experimental results demonstrate the ability of bondline-embedded d15 piezoelectric transducers to be used as actuators and sensors for ultrasonic health monitoring of bondline integrity. A comparison between surface-mounted d31 PZT and bondline-embedded d15 PZT sensors was also conducted. It was seen that signals sensed by bondline-embedded d15 PZTs showed higher distortion due to bondline defects compared with the sensed signals from the surface-mounted d31 PZT.
Subject
Control and Optimization,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献