Damage Detection Using d15 Piezoelectric Sensors in a Laminate Beam Undergoing Three-Point Bending

Author:

Altammar HussainORCID,Dhingra Anoop,Salowitz NathanORCID

Abstract

A major inhibition to the widespread use of laminate structures is the inability of nondestructive testing techniques to effectively evaluate the bondline integrity. This work proposes and analyzes a bondline-integrity health monitoring approach utilizing shear-mode (d15) piezoelectric transducers. The d15 transducers were embedded in the bondlines of symmetric laminate structures to monitor and evaluate the bondline integrity using ultrasonic inspection. The d15 piezoelectric transducers made of lead zirconate titanate (PZT) enabled ultrasonic inspection of bonds by actuating and sensing antisymmetric waves in laminate structures. Design considerations, fabrication process, and experimental methods for testing a laminate specimen are presented. Designs included bondline-embedded d15 PZT piezoelectric transducers with surface-mounted transverse (d31) piezoelectric transducers for signal comparison. Defects in the bondline were created by a quasi-static three-point bending test, with results showing the ability of d15 piezoelectric transducers to detect bondline damage. Two damage indices based on Pearson correlation coefficient and normalized signal energy were implemented to evaluate the presence of damage and its severity. The experimental results demonstrate the ability of bondline-embedded d15 piezoelectric transducers to be used as actuators and sensors for ultrasonic health monitoring of bondline integrity. A comparison between surface-mounted d31 PZT and bondline-embedded d15 PZT sensors was also conducted. It was seen that signals sensed by bondline-embedded d15 PZTs showed higher distortion due to bondline defects compared with the sensed signals from the surface-mounted d31 PZT.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3