Ultrasonic Structural Health Monitoring Approach to Predict Delamination in a Laminated Beam Using d15 Piezoelectric Sensors

Author:

Altammar Hussain1,Salowitz Nathan2

Affiliation:

1. Department of Engineering, University of Jamestown, 6028 College Lane, Jamestown, ND 58405

2. Department of Mechanical Engineering, University of Wisconsin–Milwaukee, 3200 N. Cramer Street, Milwaukee, WI 53211

Abstract

Abstract Ultrasonic structural health monitoring (SHM), employing embedded piezoelectric elements to actuate and sense ultrasonic waves, has greatly advanced in recent years. This paper presents a novel approach to address the prevailing challenges in the inspection of laminated structures for delamination using shear-mode (d15) piezoelectric transducers, composed of lead zirconate titanate (PZT). To experimentally evaluate the effectiveness of the proposed approach, a beam-like laminated specimen consisting of internally embedded d15 square PZTs was fabricated with simulated delamination at the interface of an adhesive joint. The evaluation of the results showed that the location of shear-mode actuators is a critical factor to detect delamination and to predict the propagation path of delamination. Delamination initiated close to actuators is more likely to be detected owing to their remarkable sensitivity of structural stiffness surrounding their region. The antisymmetric A0 wave mode generated by these actuators exhibits high interaction with damage, suggesting internally embedded d15 PZTs are a viable approach that can potentially advance the inspection tools of ultrasonic SHM.

Publisher

ASME International

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3