Application Characteristics of Zeolite-Based Stuffing for Nanofluidic Packer Rubber

Author:

Zhang Yafei,Liang JingweiORCID,Luo RuiORCID,Min Shiwei,Dou Yihua

Abstract

Aiming at obtaining the application characteristics of more nanofluidic stuffing to enrich the database of nanofluidic packer rubber, three zeolite-based nanofluidic types of stuffing with water, glycerin, and a saturated aqueous solution of KCl (hereinafter referred to as saturated KCl solution) as the functional liquids were studied using experiments. The results showed that all the three zeolite-based nanofluidic stuffing types could be applied as stuffing for nanofluidic packer rubber. The setting pressure ranges for zeolite/water, zeolite/glycerin, and zeolite/saturated KCl solution stuffing were 21.71 to 30.62 MPa, 15.31 to 23.57 MPa, and 27.50 to 38.83 MPa, and the specific deformation quantities of the three stuffing types were 72.76, 102.07, and 77.54 mm3∙g−1, respectively. In zeolite/saturated KCl solution stuffing, the number of liquid molecules retained in the nanochannels was the minimum; thus, this stuffing type was the most stable during application. The order of the equivalent surface tensions of the three zeolite-based stuffing types in the confined nanochannels was consistent with the order of the gas–liquid surface tensions in the bulk phase. The equivalent surface tension, which reflected the interaction between liquid–solid phases, dominated the pressure threshold, the deformation capacity, and the stability of nanofluidic stuffing. This research study provided data support for the application of nanofluidic packer rubber.

Funder

National Natural Science Foundation of China

Innovative Talent Promotion Program “Young Science and Technology Star Project” of Shaanxi Province of China

Natural Science Foundation of Shaanxi Province of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3