The Influence of Layer Stacking Method on the Mechanical Properties of Honeycomb Skeleton

Author:

Zhang Yafei12ORCID,Zhai Yuqing12,Min Shiwei3,Dou Yihua12

Affiliation:

1. School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065, China

2. Xi’an Key Laboratory of Wellbore Integrity Evaluation, Xi’an Shiyou University, Xi’an 710065, China

3. Lingyun Technology Group Co., Ltd., Xi’an 710065, China

Abstract

The performance of a multi-layer honeycomb skeleton can be significantly enhanced through tandem connection, while the structure’s properties can be tailored by altering the layer stacking method of the honeycomb skeleton. To investigate the impact of layer stacking methods on the mechanical properties of multilayer honeycomb skeletons, 3D printing technology was used to prepare double-layer honeycomb skeleton tandem structures with different dislocation modes in compression testing. A finite element simulation model was established to conduct quasi-static simulation research. Compared to that of a single-layer honeycomb skeleton, the energy absorption of the honeycomb skeleton tandem structure increased. The optimal bearing capacity of the honeycomb skeleton was achieved when the upper and lower layers were precisely aligned. Once dislocation occurred, both the value of average platform stress and energy absorption decreased. Then, the bearing capacity of the honeycomb skeleton tandem structures increased with an enlargement of the dislocation, reaching its maximum at the half-dislocation period. An increase in the partition thickness and stiffness led to a reduction in the dislocation-induced effects on the mechanical properties. The research results can provide theoretical and data support for the engineering application of honeycomb skeleton tandem structures.

Funder

National Natural Science Foundation of China

Innovative Talent Promotion Program “Young Science and Technology Star Project” of Shaanxi Province in China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3