Fracture Mechanism of Crack-Containing Strata under Combined Static and Harmonic Dynamic Loads Based on Extended Finite Elements

Author:

Zhang Haiping,Li SiqiORCID,Chen Zhuo,Tong Yeshuang,Li ZhuolunORCID,Wang Siqi

Abstract

Based on the existing research results, a theoretical fracture model of strata under the compound impact of static and harmonic dynamic load is improved, and the fracture characteristic parameters (stress intensity factor, T-stress, and fracture initiation angle) under the two far-field stress are determined according to the crack dip angle. Additionally, the effects of harmonic dynamic load on the distribution of the stress field and the fracture characteristic (the crack initiation angle, the fracture degree, the number of fracture units, and the fracture area) are further calculated and discussed by theoretical model solution, extended finite element simulation, and the secondary development of the simulation module, respectively. The research results show that the far-field stress, stress intensity factor, and T-stress vary in harmonic form with time under the compound impact of static and harmonic dynamic loads. The frequency of dynamic load affects the number of reciprocal fluctuations of stress intensity factor and T-stress as well as the crack initiation time, but has less influence on the crack initiation angle and fracture degree. While the amplitude of dynamic load affects the stress intensity factor, the extreme value of T-stress and fracture characteristics of the crack. This study has theoretical guiding significance for parameters’ optimization and realization of resonance impact drilling technology.

Funder

Enterprise Innovation Development Joint Fund Integration Project: Basic Research Program on Deep Petroleum Resource Accumulation and Key Engineering Technologies

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3