A Frequency–Azimuth Spectrum Estimation Method for Uniform Linear Array Based on Deconvolution

Author:

Lu Daiqiang1,Cai Zhiming1,Guo Wei2ORCID,Yao Zhixiang1,Cao Huanzhi1

Affiliation:

1. College of Electronics Engineering, Naval University of Engineering, Wuhan 430033, China

2. College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410000, China

Abstract

The frequency–azimuth (FRAZ) spectrum is a critical characteristic in passive target detection and tracking, as it encapsulates information regarding the signal’s frequency and azimuth. However, due to the inherent limitations in the sonar array’s physical aperture and the analysis time of the system, the signal often suffers from undersampling in both spatial and temporal dimensions. This undersampling leads to energy leakage across the azimuth and frequency domains, adversely affecting the resolution of the FRAZ spectrum. Such a reduction in resolution hampers multitarget resolution and feature extraction. To address these challenges, this study introduces a deconvolution-based FRAZ spectrum estimation method tailored for uniform linear arrays. The proposed method initiates by decoupling the azimuth and frequency in the FRAZ spectrum, forming a two-dimensional point scattering function that possesses shift-invariance. Subsequent to this, the power spectrum and the two-dimensional point scattering function undergo deconvolution using the Richardson–Lucy (R–L) iterative algorithm. The final stage involves calculating the signal azimuths and frequencies based on the deconvolution results from the preceding step. Comparative analyses involving simulations and sea test results reveal that the proposed method achieves a narrower main lobe width and diminished background noise in contrast to traditional FRAZ spectrum estimation techniques. This improvement is instrumental in minimizing the target’s energy leakage in both the azimuth and frequency domains.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3