Minimum Variance Distortionless Response—Hanbury Brown and Twiss Sound Source Localization

Author:

Liu Mengran1,Qu Shanbang1,Zhao Xuhui1

Affiliation:

1. Hubei Key Laboratory of Modern Manufacturing Quantity Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China

Abstract

Sound source target localization is an extremely useful technique that is currently utilized in many fields. The Hanbury Brown and Twiss (HBT) interference target localization method based on sound fields is not accurate enough for localization at low signal-to-noise ratios (below 0 dB). To address this problem, this paper introduces Minimum Variance Distortionless Response (MVDR) beamforming and proposes a new MVDR-HBT algorithm. Specifically, for narrowband signals, the inverse of the correlation matrix of the sound signal is calculated, and a guiding vector is constructed to compute the MVDR direction weights. These direction weights are then used to weight the correlation function of the HBT algorithm. Subsequently, the MVDR-HBT algorithm is extended from narrowband signals to broadband signals. As a result, the directivity of the HBT algorithm is optimized for wide- and narrowband signals, resulting in improved localization accuracy. Finally, the target localization accuracy of the MVDR-HBT algorithm is analyzed through simulation and localization experiments. The results show that the MVDR-HBT algorithm can accurately determine the direction of a sound source, with localization errors at different positions that are smaller than those produced by HBT. The localization performance of MVDR-HBT is considerably better than that of HBT, further verifying the simulation results. This study provides a new idea for target localization within an acoustic propagation medium (air).

Funder

National Natural Science Foundation of China

Hubei Provincial Natural Science Foundation of China

Green Industry Technology Leading Project of Hubei University of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3