Real-Time Embedded Implementation of Improved Object Detector for Resource-Constrained Devices

Author:

Ravi NiranjanORCID,El-Sharkawy MohamedORCID

Abstract

Artificial intelligence (A.I.) has revolutionised a wide range of human activities, including the accelerated development of autonomous vehicles. Self-navigating delivery robots are recent trends in A.I. applications such as multitarget object detection, image classification, and segmentation to tackle sociotechnical challenges, including the development of autonomous driving vehicles, surveillance systems, intelligent transportation, and smart traffic monitoring systems. In recent years, object detection and its deployment on embedded edge devices have seen a rise in interest compared to other perception tasks. Embedded edge devices have limited computing power, which impedes the deployment of efficient detection algorithms in resource-constrained environments. To improve on-board computational latency, edge devices often sacrifice performance, creating the need for highly efficient A.I. models. This research examines existing loss metrics and their weaknesses, and proposes an improved loss metric that can address the bounding box regression problem. Enhanced metrics were implemented in an ultraefficient YOLOv5 network and tested on the targeted datasets. The latest version of the PyTorch framework was incorporated in model development. The model was further deployed using the ROS 2 framework running on NVIDIA Jetson Xavier NX, an embedded development platform, to conduct the experiment in real time.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3