Validating the Use of Smart Glasses in Industrial Quality Control: A Case Study

Author:

Silva José1ORCID,Coelho Pedro2,Saraiva Luzia2,Vaz Paulo1ORCID,Martins Pedro1,López-Rivero Alfonso3ORCID

Affiliation:

1. Research Centre in Digital Services (CISeD), Instituto Politécnico de Viseu, 3504-510 Viseu, Portugal

2. Department of Informatics Engineering, Instituto Politécnico de Viseu, 3504-510 Viseu, Portugal

3. Computer Science Faculty, Pontifical University of Salamanca, 37002 Salamanca, Spain

Abstract

Effective quality control is crucial in industrial manufacturing for influencing efficiency, product dependability, and customer contentment. In the constantly changing landscape of industrial production, conventional inspection methods may fall short, prompting the need for inventive approaches to enhance precision and productivity. In this study, we investigate the application of smart glasses for real-time quality inspection during assembly processes. Our key innovation involves combining smart glasses’ video feed with a server-based image recognition system, utilizing the advanced YOLOv8 model for accurate object detection. This integration seamlessly merges mixed reality (MR) with cutting-edge computer vision algorithms, offering immediate visual feedback and significantly enhancing defect detection in terms of both speed and accuracy. Carried out in a controlled environment, our research provides a thorough evaluation of the system’s functionality and identifies potential improvements. The findings highlight that MR significantly elevates the efficiency and reliability of traditional inspection methods. The synergy of MR and computer vision opens doors for future advancements in industrial quality control, paving the way for more streamlined and dependable manufacturing ecosystems.

Funder

National Funds through the FCT—Foundation for Science and Technology—I.P.

Research Centre in Digital Services

Instituto Politécnico de Viseu

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of an Autonomous Device for People Detection;Advances in Intelligent Systems and Computing;2024

2. Application of Unmanned Aerial Vehicles for Autonomous Fire Detection;Advances in Intelligent Systems and Computing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3