Advanced Embedded System Modeling and Simulation in an Open Source RISC-V Virtual Prototype

Author:

Pieper PascalORCID,Herdt VladimirORCID,Drechsler RolfORCID

Abstract

RISC-V is a modern Instruction Set Architecture (ISA) that, by its open nature in combination with a clean and modular design, has enormous potential to become a game changer in the Internet of Things (IoT) era. Recently, SystemC-based Virtual Prototypes (VPs) have been introduced into the RISC-V ecosystem to lay the foundation for advanced industry-proven system-level use-cases. However, VP-driven environment modeling and interaction have mostly been neglected in the RISC-V context. In this paper, we propose such an extension to broaden the application domain for virtual prototyping in the RISC-V context. As a foundation, we built upon the open source RISC-V VP available at GitHub. For a visualization of the environment purposes, we designed a Graphical User Interface (GUI) and designed appropriate libraries to offer hardware communication interfaces such as GPIO and SPI from the VP to an interactive environment model. Our approach is designed to be integrated with SystemC-based VPs that leverage a Transaction-Level Modeling (TLM) communication system to prefer a speed-optimized simulation. To show the practicability of an environment model, we provide a set of building blocks such as buttons, LEDs and an OLED display and configured them in two demonstration environments. Moreover, for rapid prototyping purposes, we provide a modeling layer that leverages the dynamic Lua scripting language to design components and integrate them with the VP-based simulation. Our evaluation with two different case-studies demonstrates the applicability of our approach in building virtual environments effectively and correctly when matching the real physical systems. To advance the RISC-V community and stimulate further research, we provide our extended VP platform with the environment configuration and visualization toolbox, as well as both case-studies as open source on GitHub.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering

Reference30 articles.

1. The RISC-V Instruction Set Manual; Volume I: Unprivileged ISA,2019

2. The RISC-V Instruction Set Manual; Volume II: Privileged Architecture,2021

3. Better Software. Faster!: Best Practices in Virtual Prototyping;De Schutter,2014

4. RISC-V Virtual Prototype https://github.com/agra-uni-bremen/riscv-vp

5. RISC-V based virtual prototype: An extensible and configurable platform for the system-level

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Smart Memory Design Structure and Processor Framework for Embedded System;2024-06-27

2. An ASCON AOP-SystemC Environment for Security Fault Analysis;Symmetry;2024-03-14

3. Hardware and Environment Modeling;Formal and Practical Techniques for the Complex System Design Process using Virtual Prototypes;2024

4. Introduction;Formal and Practical Techniques for the Complex System Design Process using Virtual Prototypes;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3