A 3-D Surface Reconstruction with Shadow Processing for Optical Tactile Sensors

Author:

Jiang HanjunORCID,Yan Yan,Zhu Xiyang,Zhang Chun

Abstract

An optical tactile sensor technique with 3-dimension (3-D) surface reconstruction is proposed for robotic fingers. The hardware of the tactile sensor consists of a surface deformation sensing layer, an image sensor and four individually controlled flashing light emitting diodes (LEDs). The image sensor records the deformation images when the robotic finger touches an object. For each object, four deformation images are taken with the LEDs providing different illumination directions. Before the 3-D reconstruction, the look-up tables are built to map the intensity distribution to the image gradient data. The possible image shadow will be detected and amended. Then the 3-D depth distribution of the object surface can be reconstructed from the 2-D gradient obtained using the look-up tables. The architecture of the tactile sensor and the proposed signal processing flow have been presented in details. A prototype tactile sensor has been built. Both the simulation and experimental results have validated the effectiveness of the proposed 3-D surface reconstruction method for the optical tactile sensors. The proposed 3-D surface reconstruction method has the unique feature of image shadow detection and compensation, which differentiates itself from those in the literature.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3