Smart Sustainable Freight Transport for a City Multi-Floor Manufacturing Cluster: A Framework of the Energy Efficiency Monitoring of Electric Vehicle Fleet Charging

Author:

Davydenko LiudmylaORCID,Davydenko Nina,Bosak Andrii,Bosak Alla,Deja AgnieszkaORCID,Dzhuguryan TygranORCID

Abstract

This study focuses on the problem of the efficient energy management of an independent fleet of freight electric vehicles (EVs) providing service to a city multi-floor manufacturing cluster (CMFMC) within a metropolis while considering the requirements of smart sustainable electromobility and the limitations of the power system. The energy efficiency monitoring system is considered an information support tool for the management process. An object-oriented formalization of monitoring information technology is proposed which has a block structure and contains three categories of classes (information acquisition, calculation algorithms, and control procedures). An example of the implementation of the class “Operation with the electrical grid” of information technology is presented. The planning of the freight EVs charging under power limits of the charging station (CS) was carried out using a situational algorithm based on a Fuzzy expert system. The situational algorithm provides for monitoring the charging of a freight EV at a charging station, taking into account the charge weight index (CWI) assigned to it. The optimization of the CS electrical load is carried out from the standpoint of minimizing electricity costs and ensuring the demand for EV charging without going beyond its limits. A computer simulation of the EV charging mode and the CS load was performed. The results of modeling the electrical grid and CS load using the proposed algorithm were compared with the results of modeling using a controlled charging algorithm with electrical grid limitations and an uncontrolled charging algorithm. The proposed approach provides a reduction in power consumption during peak hours of the electrical grid and charging of connected EVs for an on-demand state of charge (SOC).

Funder

Maritime University of Szczecin

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3