A Framework to Analyze the Requirements of a Multiport Megawatt-Level Charging Station for Heavy-Duty Electric Vehicles

Author:

Mishra ParthaORCID,Miller EricORCID,Santhanagopalan Shriram,Bennion Kevin,Meintz AndrewORCID

Abstract

Widespread adoption of heavy-duty (HD) electric vehicles (EVs) will soon necessitate the use of megawatt (MW)-scale charging stations to charge high-capacity HD EV battery packs. Such a station design needs to anticipate possible station traffic, average and peak power demand, and charging/wait time targets to improve throughput and maximize revenue-generating operations. High-power direct current charging is an attractive candidate for MW-scale charging stations at the time of this study, but there are no precedents for such a station design for HD vehicles. We present a modeling and data analysis framework to elucidate the dependencies of a MW-scale station operation on vehicle traffic data and station design parameters and how that impacts vehicle electrification. This framework integrates an agent-based charging station model with vehicle schedules obtained through real-world vehicle telemetry data analysis to explore the station design and operation space. A case study applies this framework to a Class 8 vehicle telemetry dataset and uses Monte Carlo simulations to explore various design considerations for MW-scale charging stations and EV battery technologies. The results show a direct correlation between optimal charging station placement and major traffic corridors such as cities with ports, e.g., Los Angeles and Oakland. Corresponding parametric sweeps reveal that while good quality of service can be achieved with a mix of 1.2-megawatt and 100-kilowatt chargers, the resultant fast charging time of 35–40 min will need higher charging power to reach parity with refueling times.

Funder

U.S. Department of Energy Office of Energy Efficiency and Renewable Energy - Vehicle Technologies Office

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference31 articles.

1. Global Commercial Vehicle Electrification Potential and Trends, Forecast to 2025,2018

2. Energy Consumption and Cost Savings of Truck Electrification for Heavy-Duty Vehicle Applications

3. PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation;Kisacikoglu,2012

4. Assembly Bill 2127 Electric Vehicle Charging Infrastructure Assessment: Analyzing Charging Needs to Support Zero-Emission Vehicles in 2030—Revised Staff Report;Alexander,2021

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3