Proteomic and Biochemical Approaches Elucidate the Role of Millimeter-Wave Irradiation in Wheat Growth under Flooding Stress

Author:

Komatsu SetsukoORCID,Tsutsui Yoshie,Furuya Takashi,Yamaguchi HisateruORCID,Hitachi KeisukeORCID,Tsuchida KunihiroORCID,Tani Masahiko

Abstract

Flooding impairs wheat growth and considerably affects yield productivity worldwide. On the other hand, irradiation with millimeter waves enhanced the growth of chickpea and soybean under flooding stress. In the current work, millimeter-wave irradiation notably enhanced wheat growth, even under flooding stress. To explore the protective mechanisms of millimeter-wave irradiation on wheat under flooding, quantitative proteomics was performed. According to functional categorization, proteins whose abundances were changed significantly with and without irradiation under flooding stress were correlated to glycolysis, reactive-oxygen species scavenging, cell organization, and hormonal metabolism. Immunoblot analysis confirmed that fructose-bisphosphate aldolase and β tubulin accumulated in root and leaf under flooding; however, even in such condition, their accumulations were recovered to the control level in irradiated wheat. The abundance of ascorbate peroxidase increased in leaf under flooding and recovered to the control level in irradiated wheat. Because the abundance of auxin-related proteins changed with millimeter-wave irradiation, auxin was applied to wheat under flooding, resulting in the application of auxin improving its growth, even in such condition. These results suggest that millimeter-wave irradiation on wheat seeds improves the recovery of plant growth from flooding via the regulation of glycolysis, reactive-oxygen species scavenging, and cell organization. Additionally, millimeter-wave irradiation could promote tolerance against flooding through the regulation of auxin contents in wheat.

Funder

University of Fukui

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3