High-Precision Automatic Identification of Fentanyl-Related Drugs by Terahertz Spectroscopy with Molecular Dynamics Simulation and Spectral Similarity Mapping

Author:

Qu FangfangORCID,Lin Lei,Nie Pengcheng,Xia ZhengyanORCID

Abstract

Fentanyl is a potent opioid analgesic with high bioavailability. It is the leading cause of drug addiction and overdose death. To better control the abuse of fentanyl and its derivatives, it is crucial to develop rapid and sensitive detection methods. However, fentanyl-related substrates undergo similar molecular structures resulting in similar properties, which are difficult to be identified by conventional spectroscopic methods. In this work, a method for the automatic identification of 8 fentanyl-related substances with similar spectral characteristics was developed using terahertz (THz) spectroscopy coupled with density functional theory (DFT) and spectral similarity mapping (SSM). To characterize the THz fingerprints of these fentanyl-related samples more accurately, the method of baseline estimation and denoising with sparsity was performed before revealing the unique molecular dynamics of each substance by DFT. The SSM method was proposed to identify these fentanyl analogs based on weighted spectral cosine–cross similarity and fingerprint discrete Fréchet distance, generating a matching list by stepwise searching the entire spectral database. The top matched list returned the identification results of the target fentanyl analogs with accuracies of 94.48~99.33%. Results from this work provide algorithms’ increased reliability, which serves as an artificial intelligence-based tool for high-precision fentanyl analysis in real-world samples.

Funder

Key R & D projects in Zhejiang Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3