Comprehensive Similarity Algorithm and Molecular Dynamics Simulation-Assisted Terahertz Spectroscopy for Intelligent Matching Identification of Quorum Signal Molecules (N-Acyl-Homoserine Lactones)

Author:

Zhang Lintong1,Kong Xiangzeng1,Qu Fangfang1,Chen Linjie1,Li Jinglin2,Jiang Yilun1,Wang Chuxin1,Zhang Wenqing1,Yang Qiuhua3,Ye Dapeng1

Affiliation:

1. Center for Artificial Intelligence in Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, Fuzhou University, Fuzhou 350108, China

3. Fisheries Research Institute of Fujian, Fuzhou 350025, China

Abstract

To investigate the mechanism of aquatic pathogens in quorum sensing (QS) and decode the signal transmission of aquatic Gram-negative pathogens, this paper proposes a novel method for the intelligent matching identification of eight quorum signaling molecules (N-acyl-homoserine lactones, AHLs) with similar molecular structures, using terahertz (THz) spectroscopy combined with molecular dynamics simulation and spectral similarity calculation. The THz fingerprint absorption spectral peaks of the eight AHLs were identified, attributed, and resolved using the density functional theory (DFT) for molecular dynamics simulation. To reduce the computational complexity of matching recognition, spectra with high peak matching values with the target were preliminarily selected, based on the peak position features of AHL samples. A comprehensive similarity calculation (CSC) method using a weighted improved Jaccard similarity algorithm (IJS) and discrete Fréchet distance algorithm (DFD) is proposed to calculate the similarity between the selected spectra and the targets, as well as to return the matching result with the highest accuracy. The results show that all AHL molecular types can be correctly identified, and the average quantization accuracy of CSC is 98.48%. This study provides a theoretical and data-supported foundation for the identification of AHLs, based on THz spectroscopy, and offers a new method for the high-throughput and automatic identification of AHLs.

Funder

Natural Science Foundation of Fujian Province, China

Educational Scientific Research Project for Middle-aged and Young Teachers of the Fujian Provincial Department of Education (science and technology category), China

Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, Fuzhou University, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3