Deep Learning-Based Prediction of Throttle Value and State for Wheel Loaders

Author:

Huang JianfeiORCID,Cheng Xinchun,Shen YuyingORCID,Kong Dewen,Wang Jixin

Abstract

Accurate prediction of the throttle value and state for wheel loaders can help to achieve autonomous operation, thereby reducing the cost and accident rate. However, existing methods based on a physical model cannot accurately reflect the operator’s driving habits and the interaction between wheel loaders and the environment. In this paper, a deep-learning-based prediction model is developed to predict the throttle value and state for wheel loaders by learning from driving data. Multiple long–short-term memory (LSTM) networks are used to extract the temporal features of different stages during the operation of the wheel loader. Two backward-propagation neural networks (BPNNs), which use the temporal feature extracted by LSTM as the input, are designed to output the final prediction results of throttle value and state, respectively. The proposed prediction model is trained and tested using the data from two different conditions. The end-to-end LSTM prediction model and BPNNs are used as benchmark models. The results indicate that the proposed prediction model has good prediction accuracy and adaptability. Furthermore, the relationship between the prediction performance and signal sampling frequency is also studied. The proposed prediction method that combines driving data and deep learning can make the throttle action conform to the decisions of an experienced operator, providing technical support for the autonomous operation of construction machinery.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3