The Creation of True Two-Dimensional Silicon Carbide

Author:

Chabi SakinehORCID,Guler Zeynel,Brearley Adrian J.,Benavidez Angelica D.,Luk Ting Shan

Abstract

This paper reports the successful synthesis of true two-dimensional silicon carbide using a top-down synthesis approach. Theoretical studies have predicted that 2D SiC has a stable planar structure and is a direct band gap semiconducting material. Experimentally, however, the growth of 2D SiC has challenged scientists for decades because bulk silicon carbide is not a van der Waals layered material. Adjacent atoms of SiC bond together via covalent sp3 hybridization, which is much stronger than van der Waals bonding in layered materials. Additionally, bulk SiC exists in more than 250 polytypes, further complicating the synthesis process, and making the selection of the SiC precursor polytype extremely important. This work demonstrates, for the first time, the successful isolation of 2D SiC from hexagonal SiC via a wet exfoliation method. Unlike many other 2D materials such as silicene that suffer from environmental instability, the created 2D SiC nanosheets are environmentally stable, and show no sign of degradation. 2D SiC also shows interesting Raman behavior, different from that of the bulk SiC. Our results suggest a strong correlation between the thickness of the nanosheets and the intensity of the longitudinal optical (LO) Raman mode. Furthermore, the created 2D SiC shows visible-light emission, indicating its potential applications for light-emitting devices and integrated microelectronics circuits. We anticipate that this work will cause disruptive impact across various technological fields, ranging from optoelectronics and spintronics to electronics and energy applications.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3