Defacement Detection with Passive Adversaries

Author:

Bergadano FrancescoORCID,Carretto Fabio,Cogno FabioORCID,Ragno Dario

Abstract

A novel approach to defacement detection is proposed in this paper, addressing explicitly the possible presence of a passive adversary. Defacement detection is an important security measure for Web Sites and Applications, aimed at avoiding unwanted modifications that would result in significant reputational damage. As in many other anomaly detection contexts, the algorithm used to identify possible defacements is obtained via an Adversarial Machine Learning process. We consider an exploratory setting, where the adversary can observe the detector’s alarm-generating behaviour, with the purpose of devising and injecting defacements that will pass undetected. It is then necessary to make to learning process unpredictable, so that the adversary will be unable to replicate it and predict the classifier’s behaviour. We achieve this goal by introducing a secret key—a key that our adversary does not know. The key will influence the learning process in a number of different ways, that are precisely defined in this paper. This includes the subset of examples and features that are actually used, the time of learning and testing, as well as the learning algorithm’s hyper-parameters. This learning methodology is successfully applied in this context, by using the system with both real and artificially modified Web sites. A year-long experimentation is also described, referred to the monitoring of the new Web Site of a major manufacturing company.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference44 articles.

1. A Framework for Large-Scale Detection of Web Site Defacements

2. A Comparative Study of Anomaly Detection Techniques in Web Site Defacement Detection;Davanzo,2008

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3