Intelligent On-Off Web Defacement Attacks and Random Monitoring-Based Detection Algorithms

Author:

Cho YounghoORCID

Abstract

Recent cyberattacks armed with various ICT (information and communication technology) techniques are becoming advanced, sophisticated and intelligent. In security research field and practice, it is a common and reasonable assumption that attackers are intelligent enough to discover security vulnerabilities of security defense mechanisms and thus avoid the defense systems’ detection and prevention activities. Web defacement attacks refer to a series of attacks that illegally modify web pages for malicious purposes, and are one of the serious ongoing cyber threats that occur globally. Detection methods against such attacks can be classified into either server-based approaches or client-based approaches, and there are pros and cons for each approach. From our extensive survey on existing client-based defense methods, we found a critical security vulnerability which can be exploited by intelligent attackers. In this paper, we report the security vulnerability in existing client-based detection methods with a fixed monitoring cycle and present novel intelligent on-off web defacement attacks exploiting such vulnerability. Next, we propose to use a random monitoring strategy as a promising countermeasure against such attacks, and design two random monitoring defense algorithms: (1) Uniform Random Monitoring Algorithm (URMA), and (2) Attack Damage-Based Random Monitoring Algorithm (ADRMA). In addition, we present extensive experiment results to validate our idea and show the detection performance of our random monitoring algorithms. According to our experiment results, our random monitoring detection algorithms can quickly detect various intelligent web defacement on-off attacks (AM1, AM2, and AM3), and thus do not allow huge attack damage in terms of the number of defaced slots when compared with an existing fixed periodic monitoring algorithm (FPMA).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference37 articles.

1. Zone-H.org http://www.zone-h.org/stats/ymd/

2. Defacement, B.I.o.W. https://www.banffcyber.com/knowledge-base/articles/business-implications-web-defacement/

3. The Reaction Time to Web Site Defacements

4. Anomaly detection techniques for a web defacement monitoring service

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3