Experimental Study on Flexural Fatigue Resistance of Recycled Fine Aggregate Concrete Incorporating Calcium Sulfate Whiskers

Author:

Zhong Chuheng123,Chen Xiaoyu1,Mao Weiqi3,Xing Sijia3,Chen Jinhui45,Zhou Jinzhi1

Affiliation:

1. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China

2. Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan 430068, China

3. China Railway Major Bridge Engineering Group Co., Ltd., Wuhan 430050, China

4. School of Public Policy and Management, Tsinghua University, Beijing 100084, China

5. High-Tech Research and Development Center, Ministry of Science and Technology, Beijing 100044, China

Abstract

In order to study the flexural fatigue resistance of calcium sulfate whisker-modified recycled fine aggregate concrete (RFAC), flexural fatigue cyclic loading tests at different stress levels (0.6, 0.7, and 0.9) considering a calcium sulfate whisker (CSW) admixture as the main influencing factor were designed. Furthermore, the fatigue life was analyzed, and fatigue equations were established using the three-parameter Weibull distribution function theory. In addition, the micro-morphology of CSW-modified recycled fine aggregate concrete was observed and analyzed through Scanning Electron Microscopy (SEM), and the strengthening and toughening mechanisms of CSW on recycled fine aggregate concrete were further explored. The test results demonstrate that the inclusion of recycled fine aggregate reduces the fatigue life of concrete, while the incorporation of CSW can effectively improve the fatigue life of the recycled fine aggregate concrete, where 1% of CSW modification can extend the fatigue life of recycled fine aggregate concrete by 56.5%. Furthermore, the fatigue life of concrete under cyclic loading decreases rapidly as the maximum stress level increases. Fatigue life equations were established with double logarithmic curves, and P-S-N curves considering different survival probabilities (p = 0.5, 0.95) were derived. Microscopic analyses demonstrate that the CSW has a “bridging” effect at micro-seams in the concrete matrix, delaying the generation and enlargement of micro-cracks in the concrete matrix, thus resulting in improved mechanical properties and flexural fatigue resistance of the recycled fine aggregate concrete.

Funder

National Natural Science Foundation of China

State Key Laboratory of Bridge Structure Health and Safety

Project of Outstanding Young and Middle-aged Scientific and Technological Innovation Team in Hubei Universities and Colleges

Doctoral Start-up Fund of Hubei University of Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3