CVD Synthesis of MoS2 Using a Direct MoO2 Precursor: A Study on the Effects of Growth Temperature on Precursor Diffusion and Morphology Evolutions

Author:

Somphonsane Ratchanok12,Chiawchan Tinna1,Bootsa-ard Waraporn1,Ramamoorthy Harihara3ORCID

Affiliation:

1. Department of Physics, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

2. Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400, Thailand

3. Department of Electronics Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Abstract

In this study, the influence of growth temperature variation on the synthesis of MoS2 using a direct MoO2 precursor was investigated. The research showed that the growth temperature had a strong impact on the resulting morphologies. Below 650 °C, no nucleation or growth of MoS2 occurred. The optimal growth temperature for producing continuous MoS2 films without intermediate-state formation was approximately 760 °C. However, when the growth temperatures exceeded 800 °C, a transition from pure MoS2 to predominantly intermediate states was observed. This was attributed to enhanced diffusion of the precursor at higher temperatures, which reduced the local S:Mo ratio. The diffusion equation was analyzed, showing how the diffusion coefficient, diffusion length, and concentration gradients varied with temperature, consistent with the experimental observations. This study also investigated the impact of increasing the MoO2 precursor amount, resulting in the formation of multilayer MoS2 domains at the outermost growth zones. These findings provide valuable insights into the growth criteria for the effective synthesis of clean and large-area MoS2, thereby facilitating its application in semiconductors and related industries.

Funder

National Research Council of Thailand

King Mongkut’s Institute of Technology Ladkrabang

Publisher

MDPI AG

Subject

General Materials Science

Reference91 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3