Assessing the Water Status and Leaf Pigment Content of Olive Trees: Evaluating the Potential and Feasibility of Unmanned Aerial Vehicle Multispectral and Thermal Data for Estimation Purposes

Author:

Marques Pedro12ORCID,Pádua Luís234ORCID,Sousa Joaquim J.45ORCID,Fernandes-Silva Anabela123ORCID

Affiliation:

1. Agronomy Department, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal

2. Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal

3. Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal

4. Engineering Department, School of Science and Technology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal

5. Centre for Robotics in Industry and Intelligent Systems (CRIIS), INESC Technology and Science (INESC-TEC), 4200-465 Porto, Portugal

Abstract

Global warming presents a significant threat to the sustainability of agricultural systems, demanding increased irrigation to mitigate the impacts of prolonged dry seasons. Efficient water management strategies, including deficit irrigation, have thus become essential, requiring continuous crop monitoring. However, conventional monitoring methods are laborious and time-consuming. This study investigates the potential of aerial imagery captured by unmanned aerial vehicles (UAVs) to predict critical water stress indicators—relative water content (RWC), midday leaf water potential (ΨMD), stomatal conductance (gs)—as well as the pigment content (chlorophyll ab, chlorophyll a, chlorophyll b and carotenoids) of trees in an olive orchard. Both thermal and spectral vegetation indices are calculated and correlated using linear and exponential regression models. The results reveal that the thermal vegetation indices contrast in estimating the water stress indicators, with the Crop Water Stress Index (CWSI) demonstrating higher precision in predicting the RWC (R2 = 0.80), ΨMD (R2 = 0.61) and gs (R2 = 0.72). Additionally, the Triangular Vegetation Index (TVI) shows superior accuracy in predicting the chlorophyll ab (R2 = 0.64) and chlorophyll a (R2 = 0.61), while the Modified Chlorophyll Absorption in Reflectance Index (MCARI) proves most effective for estimating the chlorophyll b (R2 = 0.52). This study emphasizes the potential of UAV-based multispectral and thermal infrared imagery in precision agriculture, enabling assessments of the water status and pigment content. Moreover, these results highlight the vital importance of this technology in optimising resource allocation and enhancing olive production, critical steps towards sustainable agriculture in the face of global warming.

Funder

Project Olive Oil Operational Group—SustentOlive: Improvement of irrigation and fertilization practices at olive farms in Trás-os-Montes for its sustainability

Project SOIL O-LIVE—The Soil Biodiversity and Functionality of Mediterranean Olive Groves: A Holistic Analysis of the Influence of Land Management on Olive Oil Quality and Safety

FCT—Portuguese Foundation for Science and Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3