High-Quality Object Detection Method for UAV Images Based on Improved DINO and Masked Image Modeling

Author:

Lu Wanjie1ORCID,Niu Chaoyang1ORCID,Lan Chaozhen1,Liu Wei1,Wang Shiju1,Yu Junming2,Hu Tao1

Affiliation:

1. Institute of Data and Target Engineering, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China

2. 27th Research Institute, China Electronic Technology Group Corporation, Zhengzhou 450047, China

Abstract

The extensive application of unmanned aerial vehicle (UAV) technology has increased academic interest in object detection algorithms for UAV images. Nevertheless, these algorithms present issues such as low accuracy, inadequate stability, and insufficient pre-training model utilization. Therefore, a high-quality object detection method based on a performance-improved object detection baseline and pretraining algorithm is proposed. To fully extract global and local feature information, a hybrid backbone based on the combination of convolutional neural network (CNN) and vision transformer (ViT) is constructed using an excellent object detection method as the baseline network for feature extraction. This backbone is then combined with a more stable and generalizable optimizer to obtain high-quality object detection results. Because the domain gap between natural and UAV aerial photography scenes hinders the application of mainstream pre-training models to downstream UAV image object detection tasks, this study applies the masked image modeling (MIM) method to aerospace remote sensing datasets with a lower volume than mainstream natural scene datasets to produce a pre-training model for the proposed method and further improve UAV image object detection accuracy. Experimental results for two UAV imagery datasets show that the proposed method achieves better object detection performance compared to state-of-the-art (SOTA) methods with fewer pre-training datasets and parameters.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3