3MRS: An Effective Coarse-to-Fine Matching Method for Multimodal Remote Sensing Imagery

Author:

Fan ZhongliORCID,Liu Yuxian,Liu YuxuanORCID,Zhang Li,Zhang JunjunORCID,Sun Yushan,Ai Haibin

Abstract

The fusion of image data from multiple sensors is crucial for many applications. However, there are significant nonlinear intensity deformations between images from different kinds of sensors, leading to matching failure. To address this need, this paper proposes an effective coarse-to-fine matching method for multimodal remote sensing images (3MRS). In the coarse matching stage, feature points are first detected on a maximum moment map calculated with a phase congruency model. Then, feature description is conducted using an index map constructed by finding the index of the maximum value in all orientations of convolved images obtained using a set of log-Gabor filters. At last, several matches are built through image matching and outlier removal, which can be used to estimate a reliable affine transformation model between the images. In the stage of fine matching, we develop a novel template matching method based on the log-Gabor convolution image sequence and match the template features with a 3D phase correlation matching strategy, given that the initial correspondences are achieved with the estimated transformation. Results show that compared with SIFT, and three state-of-the-art methods designed for multimodal image matching, PSO-SIFT, HAPCG, and RIFT, only 3MRS successfully matched all six types of multimodal remote sensing image pairs: optical–optical, optical–infrared, optical–depth, optical–map, optical–SAR, and day–night, with each including ten different image pairs. On average, the number of correct matches (NCM) of 3MRS was 164.47, 123.91, 4.88, and 4.33 times that of SIFT, PSO-SIFT, HAPCG, and RIFT for the successfully matched image pairs of each method. In terms of accuracy, the root-mean-square error of correct matches for 3MRS, SIFT, PSO-SIFT, HAPCG, and RIFT are 1.47, 1.98, 1.79, 2.83, and 2.45 pixels, respectively, revealing that 3MRS got the highest accuracy. Even though the total running time of 3MRS was the longest, the efficiency for obtaining one correct match is the highest considering the most significant number of matches. The source code of 3MRS and the experimental datasets and detailed results are publicly available.

Funder

Shenzhen Special Project for Innovation and Entrepreneurship

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3