SatellStitch: Satellite Imagery-Assisted UAV Image Seamless Stitching for Emergency Response without GCP and GNSS

Author:

Wei Zijun1,Lan Chaozhen1,Xu Qing1,Wang Longhao1,Gao Tian1ORCID,Yao Fushan1,Hou Huitai1

Affiliation:

1. Institute of Geospatial Information, The PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China

Abstract

Rapidly stitching unmanned aerial vehicle (UAV) imagery to produce high-resolution fast-stitch maps is key to UAV emergency mapping. However, common problems such as gaps and ghosting in image stitching remain challenging and directly affect the visual interpretation value of the imagery product. Inspired by the data characteristics of high-precision satellite images with rich access and geographic coordinates, a seamless stitching method is proposed for emergency response without the support of ground control points (CGPs) and global navigation satellite systems (GNSS). This method aims to eliminate stitching traces and solve the problem of stitching error accumulation. Firstly, satellite images are introduced to support image alignment and geographic coordinate acquisition simultaneously using matching relationships. Then a dynamic contour point set is constructed to locate the stitching region and adaptively extract the fused region of interest (FROI). Finally, the gradient weight cost map of the FROI image is computed and the Laplacian pyramid fusion rule is improved to achieve seamless production of the fast-stitch image map with geolocation information. Experimental results indicate that the method is well adapted to two representative sets of UAV images. Compared with the Laplacian pyramid fusion algorithm, the peak signal-to-noise ratio (PSNR) of the image stitching results can be improved by 31.73% on average, and the mutual information (MI) can be improved by 19.98% on average. With no reliance on CGPs or GNSS support, fast-stitch image maps are more robust in harsh environments, making them ideal for emergency mapping and security applications.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3