Affiliation:
1. Faculty of Geography, Yunnan Normal University, Kunming 650500, China
2. China Energy Engineering Group, Yunnan Electric Power Design Institute Co., Ltd., Kunming 650051, China
Abstract
Landslide traces are crucial geomorphological features of landslides. Through the recognition of landslide traces, a better grasp of the topographical features of landslides can be achieved, thereby aiding in the enhancement of capabilities for the prevention, response, and management of landslides. Aiming at the complex topographic features of landslide traces, only using a single DEM product could provide a complete and comprehensive recognition of landslide traces. A method of landslide tracing recognition based on the fusion of multi-feature information from the Unmanned Aerial Vehicle-based Light Detection and Ranging (UAV-based LiDAR) Digital Elevation Model (DEM) is proposed. First, a high-precision DEM is constructed by using the LiDAR point cloud data. Based on the DEM, four multi-feature images that can enhance the landslide geomorphology are generated: hillshading, slope, positive openness, and sky-view factor. Furtherore, the DEM multi-feature images were fused using the Visualization for Archaeological Topography (VAT) method to obtain the DEM Multi-Feature Fusion Image (DEM-DFFI). Finally, the landslide traces were extracted from the DEM-DFFI based on fractal theory. The method presented in this paper makes full use of DEM multi-feature images and fuses them, which can accurately and clearly show the topographic and geomorphological features of landslides. Based on this, it helps improve landslide trace recognition accuracy.
Funder
National Natural Science Foundation of China
Yunnan Fundamental Research Projects
the ‘Revitalizing Yunnan Talents Support Program’
Yunnan Academician and Expert Workstation
Yunnan Provincial Basic Research Project-Key Project
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献