Use of High-Resolution Multi-Temporal DEM Data for Landslide Detection

Author:

Azmoon BehnamORCID,Biniyaz AynazORCID,Liu ZhenORCID

Abstract

Landslides in urban areas have been relatively well-documented in landslide inventories despite issues in accuracy and completeness, e.g., the absence of small landslides. By contrast, less attention has been paid to landslides in sparsely populated areas in terms of their occurrences and locations. This study utilizes high-resolution and LiDAR-derived digital elevation models (DEMs) at two different times for landslide detection to (1) improve the localization and detection accuracies in landslide inventories, (2) minimize human intervention in the landslide detection process, and (3) identify landslides that cannot be easily documented in the current state of the practice. To achieve this goal, multiple preprocessing steps were used to ensure the spatial alignment of the multi-temporal DEMs. Map algebra was then used to calculate the vertical displacement for each cell and create a DEM of Difference (DoD) to obtain a quantitative estimation of ground deformations. Next, the elevation changes were filtered via an appropriate Level of Detection (LoD) threshold to mark potential landslide candidates. The landslide candidates were further assessed with the aid of customized topographic maps as auxiliary data and pattern recognition to distinguish landslides (true positive changes) from construction, erosion, and deposition (false positives). The results from the proposed method were compared with existing landslide inventories and reports to evaluate its performance. The new method was also validated with temporal high-resolution Google Earth images. The results showed the successful application of the method in landslide detection and mapping. Compared with traditional methods, the proposed method provides a semi-automatic way to obtain landslide inventories with publicly available yet lowly utilized DEM data, which can be valuable in preliminary analysis for landslide detection.

Funder

National Science Foundation

National Sleep Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3