Solar UAVs—More Aerodynamic Efficiency or More Electrical Power?

Author:

Dinca Liviu1,Corcau Jenica-Ileana1ORCID,Voinea Daniel-Gabriel1

Affiliation:

1. Department of Electrical, Energetic and Aerospace Engineering, Faculty of Electrical Engineering, University of Craiova, 200585 Craiova, Romania

Abstract

Solar UAVs (unmanned aerial vehicles) have experienced important development in recent years. The use of solar free energy is not neglected in the present energy crisis, with the intention to move toward green energies. However, an important problem arises concerning the limited amount of solar energy available on board UAVs. Until now, high-aerodynamic-efficiency configurations have been used. These configurations use high-aspect-ratio wings. However, high-aspect-ratio wings have some disadvantages regarding their excessive elasticity and weak bending resistance in the housing section. Additionally, the aircraft maneuverability is reduced. In this work, a study is proposed on a solar UAV configuration that sacrifices high aerodynamic efficiency for a higher surface area available for solar cells. In this manner, the amount of energy available on board the UAV is increased, and the UAV structure becomes more rigid and robust. The presented UAV fits better with more complex evolutions, is more maneuverable and the wingspan is much reduced. This UAV is more compact, can maneuver better in the take-off and landing phases, and the necessary storage space is considerably reduced. This paper highlights the performances that can be achieved using this kind of UAV and explores whether these performances are enough for some applications. Using an on-board energy balance, the possible performances of this new configuration is studied. As this is a preliminary study, the precision level is not very high, but it offers an image concerning the possibilities of this new configuration.

Funder

Internal Research Program of the Electrical, Energetic and Aerospace Engineering Department, financed by the University of Craiova

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3