A Mass, Fuel, and Energy Perspective on Fixed-Wing Unmanned Aerial Vehicle Scaling

Author:

Diogo Carlos M. A.1ORCID,Fernandes Edgar C.1ORCID

Affiliation:

1. IN+ Centre for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Abstract

Fixed-Wing Unmanned Aerial Vehicles (UAVs) have been improving significantly in application and versatility, sharing design similarities with airplanes, particularly at the design stage, when the take-off mass is used to estimate other characteristics. In this work, an internal database of UAVs is built to allow their comparison with airplanes under different parameters and assess key differences in patterns across UAV powertrains. The existing literature on speed vs. take-off mass is updated with 534 UAV entries, and a range vs. take-off mass diagram is created with 503 UAVs and 193 airplanes. Additionally, different transportation efficiency metrics are compared between UAVs and airplanes, highlighting scenarios advantageous for UAVs. A new paradigm focused on useful energy is then used to understand the underlying effectiveness of UAV implementations. Increasing useful energy is more effective in increasing the speed, transport work, and surveying work of internal combustion UAVs and more effective in increasing the range and endurance of battery-electric UAVs. Finally, it is observed that the mass of all fixed-wing aerial vehicles, both UAVs and airplanes, except for battery electric and solar, adheres to a well-defined scaling law based on useful energy. A parallel to this scaling law is suggested to describe future battery-electric UAVs and airplanes.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3