Author:
Jiang Meiying,Jiang Beiyan,Wang Qi
Abstract
It is a challenge to design a satisfactory controller for a complex multivariable industrial system with minimal offsetting and a slow response. An internal model control method is proposed for rank-deficient systems with a time delay based on a damped pseudo-inverse. An internal model control was designed to obtain the desired dynamic characteristics of the system by transforming the time-delay system into a system without a time delay, following the Pade approximation approach. By introducing a damping factor, the internal model controller was designed based on a damped pseudo-inverse, since the inverse matrix of the rank-deficient system does not exist. Furthermore, a singular value decomposition was used to analyze the steady-state performance of the system. The selection of the damping factor was also presented, and a μ analysis was made to evaluate the stability of the system. To demonstrate the effectiveness of the proposed method, a crude distillation process with five inputs and four outputs was considered as an example. The simulation results illustrate that not only can the proposed strategy guarantee the system’s stability, but it also has a relatively good dynamic performance.
Funder
Premium Funding Project for Academic Human Resources Development in Beijing Union University
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献