Optimal System for Improved Internal Model Control of Argon-Oxygen Decarburization Process Based on the Piecewise Linear Model and Time Constant of Filter Optimization

Author:

Guan Changjun1ORCID,You Wen1

Affiliation:

1. School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China

Abstract

This paper presents an improved internal model control system to raise the efficiency of refining low-carbon ferrochrome. This control system comprises of a piecewise linearized transfer function and an improved internal model controller based on optimized time constant of the filter. The control system is mainly used to control the oxygen supply rate during the argon-oxygen refining for controlling the smelting temperature. The regulatory performance and servo of two closed-loop control schemes are compared between the improved internal model controller based on the optimized filter time 0000-0002-7606-6546and the internal model controller based on the fixed filter time constant. The simulation analysis shows that the piecewise linearized model and the optimization of the time constant of the filter improves the response time, stability, and anti-interference ability of the controller. Then, the proposed improved internal model controller is used to adjust the gas supply flow in 5 ton AOD furnace to control the smelting temperature. Ten production tests performed the effectiveness of the controlling refining optimal system. The analysis of the experimental data shows that the improved internal model control system can shorten the melting time and improve the melting efficiency. Thus, the application of the improved internal model control system in low-carbon ferrochrome refining is an interesting potential direction for future research.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3