Identifying Patient–Ventilator Asynchrony on a Small Dataset Using Image-Based Transfer Learning

Author:

Pan QingORCID,Jia Mengzhe,Liu Qijie,Zhang Lingwei,Pan Jie,Lu Fei,Zhang ZhonghengORCID,Fang Luping,Ge Huiqing

Abstract

Mechanical ventilation is an essential life-support treatment for patients who cannot breathe independently. Patient–ventilator asynchrony (PVA) occurs when ventilatory support does not match the needs of the patient and is associated with a series of adverse clinical outcomes. Deep learning methods have shown a strong discriminative ability for PVA detection, but they require a large number of annotated data for model training, which hampers their application to this task. We developed a transfer learning architecture based on pretrained convolutional neural networks (CNN) and used it for PVA recognition based on small datasets. The one-dimensional signal was converted to a two-dimensional image, and features were extracted by the CNN using pretrained weights for classification. A partial dropping cross-validation technique was developed to evaluate model performance on small datasets. When using large datasets, the performance of the proposed method was similar to that of non-transfer learning methods. However, when the amount of data was reduced to 1%, the accuracy of transfer learning was approximately 90%, whereas the accuracy of the non-transfer learning was less than 80%. The findings suggest that the proposed transfer learning method can obtain satisfactory accuracies for PVA detection when using small datasets. Such a method can promote the application of deep learning to detect more types of PVA under various ventilation modes.

Funder

National Natural Science Foundation of China

Zhejiang Province Key Research and Development Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

1. Asynchronies during mechanical ventilation are associated with mortality

2. Monitoring Patient–Ventilator Interaction;De Haro,2019

3. Patient-ventilator asynchrony

4. Patient-Ventilator Trigger Asynchrony in Prolonged Mechanical Ventilation

5. Ineffective triggering predicts increased duration of mechanical ventilation;De Wit;Crit. Care Med.,2009

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3