Machine learning algorithm for ventilator mode selection, pressure and volume control

Author:

T. AnithaORCID,G. Gopu,P. Arun Mozhi DevanORCID,Assaad Maher

Abstract

Mechanical ventilation techniques are vital for preserving individuals with a serious condition lives in the prolonged hospitalization unit. Nevertheless, an imbalance amid the hospitalized people demands and the respiratory structure could cause to inconsistencies in the patient’s inhalation. To tackle this problem, this study presents an Iterative Learning PID Controller (ILC-PID), a unique current cycle feedback type controller that helps in gaining the correct pressure and volume. The paper also offers a clear and complete examination of the primarily efficient neural approach for generating optimal inhalation strategies. Moreover, machine learning-based classifiers are used to evaluate the precision and performance of the ILC-PID controller. These classifiers able to forecast and choose the perfect type for various inhalation modes, eliminating the likelihood that patients will require mechanical ventilation. In pressure control, the suggested accurate neural categorization exhibited an average accuracy rate of 88.2% in continuous positive airway pressure (CPAP) mode and 91.7% in proportional assist ventilation (PAV) mode while comparing with the other classifiers like ensemble classifier has reduced accuracy rate of 69.5% in CPAP mode and also 71.7% in PAV mode. An average accuracy of 78.9% rate in other classifiers compared to neutral network in CPAP. The neural model had an typical range of 81.6% in CPAP mode and 84.59% in PAV mode for 20 cm H2O of volume created by the neural network classifier in the volume investigation. Compared to the other classifiers, an average of 72.17% was in CPAP mode, and 77.83% was in PAV mode in volume control. Different approaches, such as decision trees, optimizable Bayes trees, naive Bayes trees, nearest neighbour trees, and an ensemble of trees, were also evaluated regarding the accuracy by confusion matrix concept, training duration, specificity, sensitivity, and F1 score.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3