Recent Novel Fabrication Techniques for Proton-Conducting Solid Oxide Fuel Cells

Author:

Yu Mengyang12ORCID,Feng Qiuxia34,Liu Zhipeng15,Zhang Peng34,Zhu Xuefeng34,Mu Shenglong125

Affiliation:

1. Liaoning Provincial Key Laboratory for Preparation and Application of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China

2. Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang 110142, China

3. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Zhongshan Road 457, Dalian 116023, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

5. Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110300, China

Abstract

Research has been conducted on solid oxide fuel cells (SOFCs) for their fuel flexibility, modularity, high efficiency, and power density. However, the high working temperature leads to the deterioration of materials and increased operating costs. Considering the high protonic conductivity and low activation energy, the proton conducting SOFC, i.e., the protonic ceramic fuel cell (PCFC), working at a low temperature, has been wildly investigated. The PCFC is a promising state-of-the-art electrochemical energy conversion system for ecological energy; it is characterized by near zero carbon emissions and high efficiency, and it is environment-friendly. The PCFC can be applied for the direct conversion of various renewable fuels into electricity at intermediate temperatures (400–650 °C). The construction of the PCFC directly affect its properties; therefore, manufacturing technology is the crucial factor that determines the performance. As a thinner electrolyte layer will lead to a lower polarization resistance, a uniformly constructed and crack-free layer which can perfectly bond to electrodes with a large effective area is challenging to achieve. In this work, different fabrication methods are investigated, and their effect on the overall performance of PCFCs is evaluated. This article reviews the recent preparation methods of PCFCs, including common methods, 3D printing methods, and other advanced methods, with summarized respective features, and their testing and characterization results.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3