Effect of Particle Concentration on the Microstructure and Properties of Electrodeposited Nickel–Diamond Composite Coatings

Author:

Yang Zhiyuan1,Ge Kunxiang1,Cai Wen2,Liu Shenqiang1,Zhang Shitao1,Pan Zhengyang1,Zhang Jianing1,Zhao Yuantao1,Li Wenge1,Liu Yanbo3

Affiliation:

1. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

2. Shanghai Waigaoqiao shipbuilding Co., Ltd., Shanghai 200137, China

3. Shanghai Nanotechnology Promotion Center, Shanghai 200237, China

Abstract

For the purpose of improving the wear properties of Ni composite coatings, diamond particles were co-electrodeposited into Ni–diamond composite coatings. The effect of diamond particle concentration in the electrolyte on the surface morphology, microstructure, and wear properties of Ni–diamond composite coatings was investigated. The electrodeposition behaviors of the composite coatings were simulated by COMSOL5.6. The results showed that the content of diamond particles in the coating was elevated by increasing the particle concentration in the electrolyte. The formation of [200] fiber texture was blocked and concurrently brought about crystallite refinement of the Ni deposits by the embedded particles. The COMSOL simulation findings indicated that embedded particles influenced the microstructure of the Ni deposits through processes such as heterogeneous nucleation, rearrangement, and concentration of local current density. The synergistic effect of the tailored microstructure and embedded particles substantially enhanced the wear resistance of the coating. By increasing the particle concentration in the electrolyte, the wear resistance of the coating was gradually enhanced, and the coating electrodeposited at 16 g/L possessed the lowest friction coefficient and the smallest profile of wear scratch owning to the strengthened synergistic effect.

Funder

Shanghai High-level Local University Innovation Team

Science & Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Controlling coating thickness distribution for a complex geometry with the help of simulation;The International Journal of Advanced Manufacturing Technology;2024-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3