The Effect of Temperature on the Surface Energetic Properties of Carbon Fibers Using Inverse Gas Chromatography

Author:

Hamieh Tayssir12ORCID

Affiliation:

1. Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands

2. Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, Lebanese University, Hadath P.O. Box 6573, Lebanon

Abstract

This paper constitutes an original and new methodology for the determination of the surface properties of carbon fibers in two forms, namely, oxidized and untreated, using the inverse gas chromatography technique at infinite dilution based on the effect of temperature on the surface area of various organic molecules adsorbed on the carbon fibers. The studied thermal effect showed a large deviation from the classical methods or models relative to the new determination of the surface properties of carbon fibers, such as the dispersive component of their surface energy, the free surface energy, the free specific energy, and the enthalpy and entropy of the adsorption of molecules on the carbon fibers. It was highlighted that the variations in the London dispersive surface energy of the carbon fibers as a function of the temperature satisfied excellent linear variations by showing large deviations between the values of γsd (T), calculated using different models, which can reach 300% in the case of the spherical model. All models and chromatographic methods showed that the oxidized carbon fibers gave larger specific free enthalpy of adsorption whatever the adsorbed polar molecules. The obtained specific enthalpy and entropy of the adsorption of the polar solvents led to the determination of the Lewis acid–base constants of the carbon fibers. Different molecular models and chromatographic methods were used to quantify the surface thermodynamic properties of the carbon fibers, and the results were compared with those of the thermal model. The obtained results show that the oxidized carbon fibers gave more specific interaction energy and greater acid–base constants than the untreated carbon fibers, thus highlighting the important role of oxidization in the acid–base of fibers. The determination of the specific acid–base surface energy of the two carbon fibers showed greater values for the oxidized carbon fibers than for the untreated carbon fibers. An important basic character was highlighted for the two studied carbon fibers, which was larger than the acidic character. It was observed that the carbon fibers were 1.4 times more acidic and 2.4 times more basic. The amphoteric character of the oxidized fibers was determined, and it was 1.7 times more important than that of the untreated fibers This tendency was confirmed by all molecular models and chromatographic methods. The Lewis acid and base surface energies of the solid surface, γs+ and γs−, as well as the specific acid–base surface energy γsAB of the carbon fibers at different temperatures were determined. One showed that the specific surface energy γsAB of the oxidized fibers was 1.5 times larger than that of the untreated fibers, confirming the above results obtained on the strong acid–base interactions of the oxidized carbon fibers with the various polar molecules.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3