Growth of Spontaneous Nucleation AlN Crystals by Al-Base Alloy Evaporation in Nitrogen Atmosphere

Author:

Tao Xiaochun1,Xu Yongkuan1ORCID,Chen Jianli1,Yu Yonggui1,Qi Xiaofang1,Ma Wencheng1,Hu Zhanggui1

Affiliation:

1. Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China

Abstract

Aluminum nitride (AlN) crystals with areas ranging from 1 mm2 to 2 mm2 were successfully grown through spontaneous nucleation at 1700 °C using a modified vapor transport method. In this approach, Cu–Al alloy served as the source of aluminum (Al), and nitrogen (N2) was employed as the nitrogen source. The morphology and crystalline quality of the AlN crystals were characterized by a stereo microscope, Raman spectrometer, photoluminescence (PL) and secondary-ion mass spectrometry (SIMS). Deposited on the graphite lid, the as-grown AlN crystals exhibited both rectangular and hexagonal shapes, identified as m-plane and c-plane AlN, respectively, based on Raman spectroscopy. The full width half maximum (FWHM) values of E2 (high) for the rectangular and hexagonal grains were measured to be 6.00 cm−1 and 6.06 cm−1, respectively, indicating high crystalline quality. However, PL and SIMS analysis indicated the presence of impurities associated with oxygen in the crystals. This paper elucidates the growth mechanism of the modified vapor transport method and highlights the role of the Cu–Al alloy in sustaining reactions at lower temperatures. The addition of copper (Cu) not only facilitates sustainable reactions, but also provides a novel perspective for the growth of AlN single crystals.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3