Influence of Post-Annealing Treatment on Some Physical Properties of Cerium Oxide Thin Films Prepared by the Sol–Gel Method

Author:

Al-Shomar S. M.1

Affiliation:

1. Physics Department, Faculty of Science, Ha’il University, Hail 81451, Saudi Arabia

Abstract

In this study, thin films of Cerium Oxide CeO2 were fabricated using the sol–gel technique and deposited onto a glass substrate. The annealing process was carried out at various temperatures ranging from 200 to 600 °C to investigate the structural, morphological, and optical properties of the films and their interrelations. X-ray diffraction (XRD) patterns revealed the crystalline nature of the prepared films, with film quality exhibiting enhancement with increasing annealing temperature. The average crystallite size, dislocation density, microstrain, and lattice constant were determined from XRD patterns. Higher annealing temperatures were found to increase the crystallite size values from 4.71 to 15.33 nm and decrease the dislocation density and microstrain of the unit cell. Scanning electron microscope (SEM) images illustrated the uniformity of the films, presenting a spheroid shape. Optical properties such as transmittance, absorbance, reflectance, the direct band gap, extinction coefficients, the refractive index, and optical conductivity were assessed using optical measurements. The direct optical band gap of the CeO2 film was observed to decrease from 3.99 to 3.75 eV with increasing film thickness. Using the Wemple and DiDomenico (WDD) single-oscillator model, dispersion energy parameters were calculated based on the refractive index. The nonlinear optical properties of the CeO2 thin films were evaluated using these dispersion energy parameters. The improvement of optical parameters holds significance in standardizing CeO2 thin films for various optoelectronic applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3